SPRAYS ON VECTOR BUNDLES

R. H. BOWMAN

1. Introduction

Suppose that $p\colon TX\to X$ is the tangent bundle of a smooth (C^∞) manifold X. A spray on X (or on the tangent bundle $p\colon TX\to X$), a notion due to Ambrose, Palais and Singer [1] is a smooth cross-section ξ of the tangent bundle $\sigma\colon TTX\to TX$ having the properties

$$p_*\xi = \sigma\xi$$
, $\xi \circ h_\alpha = h_\alpha(h_\alpha)_*\xi$,

where h_{α} is the smooth vector bundle morphism defined by scalar multiplication on each fiber by $\alpha \in R$ [4, p. 68], and $(h_{\alpha})_{*}$ its tangent map.

The purpose of this paper is to generalize the concept of a spray on the tangent bundle of X to a spray on the bundle $q: TX \to X$ when TX admits an additional vector bundle structure q over X, and to discuss in some detail the case where X = TM, and M is a smooth manifold. We define sprays of the first and second type on an arbitrary vector bundle $q: TX \to X$, and in the case X = TM show that each spray on M induces a spray of the second type on $\pi_*: TTM \to TM$, a spray of the first type on the tangent bundle $^1\pi: TTM \to TM$ of TM and investigate the relationship between these sprays. Sprays related to connections are investigated, and it is shown that the sprays of connections induced on the bundle structures of TTM by a linear connection V on M coincide with the sprays induced on these bundles by the spray of the connection V.

The notation employed throughout the paper is essentially that of [4] and [5], with manifolds and vector bundles modeled on Banach spaces.

2. The general definition

Suppose that $p: TX \to X$ and $q: TX \to X$ are two vector bundle structures on TX over X, and $\phi: TX \to TX$ is a vector bundle isomorphism such that $q \circ \phi = p$.

Definition. A smooth cross-section ξ of σ : $TTX \to TX$ is called a spray of the first type on $q: TX \to X$ if it satisfies the conditions:

i.
$$q_*\xi = \sigma\xi$$
,

Communicated by R. S. Palais, November 26, 1969. Partially supported by a Vanderbilt University Research Council grant.

ii. $\xi \circ h_{\alpha} = h_{\alpha}(h_{\alpha})_{\star} \xi$;

and ξ is called a spray of the second type on $q: TX \to X$ if it satisfies the conditions:

iii.
$$\phi \circ q_* \xi = \sigma \xi$$
,
iv. $\xi \circ \phi \circ h_\sigma \circ \phi^{-1} = h_\sigma \circ \phi_* \circ (h_\sigma)_* \circ \phi_*^{-1} \circ \xi$.

3. Sprays on the vector bundles of TTM

Take X = TM, where M is a smooth manifold modeled on a Banach space B. In this case TX = TTM, which has the two vector bundle structures $\pi_* \colon TTM \to TM$ (π_* is the tangent map of the tangent bundle map $\pi \colon TM \to M$) and the tangent bundle structure ${}^1\pi \colon TTM \to TM$. Connecting these structures we have the symmetry map $S \colon TTM \to TTM$, [3, p. 125], a vector bundle isomorphism such that $S = S^{-1}$ and $\pi_*S = {}^1\pi$. A spray on one of the bundles of TTM is then a cross-section of the tangent bundle ${}^2\pi \colon TTTM \to TTM$ of TTM satisfying either conditions i and ii or iii and iv with $\phi = S$.

Suppose that U is the coordinate neighborhood of a smooth chart of M. If we identify U with its image in B, then the tangent map determines a smooth chart $U \times B \approx TM \mid U$ of TM. Similarly, U determines the smooth charts $U \times B^3 \approx TTM \mid (TM \mid U)$ of TTM and $U \times B^7 \approx TTTM \mid \{TTM \mid (TM \mid U)\}$ of TTTM. We will refer to these charts as the local product structure determined by a given coordinate chart of M, or simply as the local product structure. In terms of this local product structure the isomorphism S interchanges the middle sets of coordinates, e.g., $S(x^0, x^1, x^2, x^3) = (x^0, x^2, x^1, x^3)$.

Lemma 1. $\xi: TM \to TTM$ is a spray on $\pi: TM \to M$ if and only if in the local product structure determined by each smooth chart of M, ξ is given by

(1)
$$\xi(x^0, x^1) = (x^0, x^1, x^1, \Lambda(x^0)(x^1, x^1)),$$

where $\Lambda: U \to L^2(B, B; B)$ is smooth.

Proof. Suppose that in the local product structure determined by each chart of M, ξ is given by (1) with Λ smooth. Then ξ is a smooth cross-section of ${}^{1}\pi$: $TTM \to TM$, and since $\pi_{*}\xi(x^{0}, x^{1}) = (x^{0}, x^{1})$ and ${}^{1}\pi\xi(x^{0}, x^{1}) = (x^{0}, x^{1})$ we see that $\pi_{*}\xi = {}^{1}\pi\xi$. Also, since

$$\xi \circ h_{\alpha}(x^0, x^1) = (x^0, \alpha x^1, \alpha x^1, \Lambda(x^0)(\alpha x^1, \alpha x^1))$$

and

$$h_{\alpha}(h_{\alpha})_{*}\xi(x^{0}, x^{1}) = (x^{0}, \alpha x^{1}, \alpha x^{1}, \alpha^{2}\Lambda(x^{0})(x^{1}, x^{1})),$$

the bilinearity of Λ implies that $\xi \circ h_{\alpha} = h_{\alpha}(h_{\alpha})_{*}\xi$ and hence that ξ is a spray on $\pi \colon TM \to M$.

On the other hand, suppose that ξ is a spray on π : $TM \rightarrow M$. Then in terms of any local product structure, ξ has the form

$$\xi(x^0, x^1) = (x^0, x^1, \xi^0(x^0, x^1), \xi^1(x^0, x^1))$$

with ξ^0 and ξ^1 smooth. Conditions i and ii then imply that $\xi^0(x^0, x^1) = x^1$ and that $\xi^1(x^0, \alpha x^1) = \alpha^2 \xi^1(x^0, x^1)$, i.e., that $\xi(x^0, x^1)$ is homogeneous of degree two in x^1 . If we write

(2)
$$\xi^{1}(x^{0}, ux^{1}) = \int_{0}^{u} \frac{d}{dt} \xi^{1}(x^{0}, tx^{1}) dt = \left(\int_{0}^{u} \partial_{2} \xi^{1}(x^{0}, tx^{1}) dt \right) (x^{1}),$$

where ∂_2 denotes the first partial derivative with respect to the second variable, then we have

$$\int_0^u \alpha \partial_2 \xi^1(x^0, tx^1) dt = \int_0^u \partial_2 \xi^1(x^0, t\alpha x^1) dt,$$

which upon differentiating and setting u = 1 yields $\alpha \partial_2 \xi^1(x^0, x^1) = \partial_2 \xi^1(x^0, \alpha x^1)$, i.e., $\partial_2 \xi^1(x^0, x^1)$ is homogeneous of degree one in x^1 . By a similar argument we see that $\partial_2(\partial_2 \xi^1(x^0, x^1))$ is homogeneous of degree zero in x^1 . This implies that

$$\partial_2(\partial_2\xi^1(x^0,x^1)): U \times B \to L(B,L(B,B))$$

is constant in x^1 . Thus via the topological isomorphism $L(B, L(B, B)) \approx L^2(B, B; B)$, [4, p. 5], this implies that $\partial_2(\partial_2\xi^1(x^0, x^1)) = 2\Lambda(x^0)$ where $\Lambda: U \to L^2(B, B; B)$ is smooth, and that $\xi^1(x^0, x^1) = \Lambda(x^0)(x^1, x^1)$. Consequently, ξ has the form (1) in the local product structure determined by each smooth chart of M.

Remark. The finite dimensional analogue of Lemma 1 follows from the remarks made by Dombrowski in [2, p. 87], though it is not stated in this form.

Lemma 2. $\xi: TTM \rightarrow TTTM$ is a spray of the first type on $^1\pi: TTM \rightarrow TM$ if and only if in the local product structure determined by each smooth chart of M, ξ is given by

$$\begin{array}{ll} (3) & \xi(x^0, x^1, x^2, x^3) \\ &= (x^0, x^1, x^2, x^3; x^2, x^3, \Lambda^0(x^0, x^1)(x^2, x^3)(x^2, x^3), \Lambda^1(x^0, x^1)(x^2, x^3)(x^2, x^3)) \,, \end{array}$$

where $A^i: U \times B \to L^2(B \times B, B \times B; B)$ is smooth.

Proof. Since ${}^1\pi_*(x^0, x^1, x^2, x^3; x^4, x^5, x^0, x^7) = (x^0, x^1, x^4, x^5), (x^0, x^1)$ corresponds to $x^0, (x^2, x^3)$, to $x^1, (x^4, x^5)$, to x^2 and (x^6, x^7) , to x^3 in Lemma 1, and thus it may be applied to obtain the desired result. Similarly we have the lemma.

Lemma 3. $\xi: TTM \to TTTM$ is a spray of the second type on $\pi_*: TTM \to TM$ if and only if in the local product structure determined by each smooth chart of M, ξ is given by

$$\begin{array}{ll} (4) & \xi(x^0, x^1, x^2, x^3) \\ &= (x^0, x^1, x^2, x^3; \ x^1, \Lambda^0(x^0, x^2)(x^1, x^3)(x^1, x^3), x^3, \Lambda^1(x^0, x^2)(x^1, x^3)(x^1, x^3)) \end{array}$$

where $\Lambda^i : U \times B \to L^2(B \times B, B \times B; B)$ is smooth.

Theorem 1. Each spray on M induces a spray of the second type on $\pi_*: TTM \to TM$; moreover $\pi_*: TTM \to TM$ admits no spray of the first type.

Proof. In terms of the local product structure on TM and TTM a spray on M has the form (1) by Lemma 1. Since $\xi_*(x^0, x^1, x^2, x^3)$ is the tangent vector at t = 0 of the curve

$$\xi(x^0 + tx^2, x^1 + tx^3)$$
= $(x^0 + tx^2, x^1 + tx^3, x^1 + tx^3, A(x^0 + tx^2)(x^1 + tx^3, x^1 + tx^3))$,

we have

$$\xi_*(x^0, x^1, x^2, x^3) = (x^0, x^1, x^1, \Lambda(x^0)(x^1, x^1); x^2, x^3, x^3, \Lambda'(x^0)(x^2, x^1, x^1) + \Lambda(x^0)(x^3, x^1) + \Lambda(x^0)(x^1, x^3)),$$

where the prime denotes differentiation. Thus,

(5)
$$S\xi_*(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; x^1, \Lambda(x^0)(x^1, x^1), x^3, \Lambda'(x^0)(x^2, x^1, x^1) + \Lambda(x^0)(x^3, x^1) + \Lambda(x^0)(x^1, x^3)),$$

which in view of the topological isomorphism

$$L^{2}(B \times B, B \times B; B)$$

$$\approx L^{2}(B, B; B) \times L^{2}(B, B; B) \times L^{2}(B, B; B) \times L^{2}(B, B; B)$$

is a map of the form (4) and hence by Lemma 3, $S\xi_*$ is a spray of the second type on $\pi_*: TTM \to TM$.

To prove the second part of the theorem assume that π_* : $TTM \rightarrow TM$ admits a spray of the first type, say η ; then η has the form

$$\eta(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; \eta^0, \eta^1, \eta^2, \eta^3)$$
.

Since $\pi_{**}\eta(x^0, x^1, x^2, x^3) = (x^0, x^2, \eta^0, \eta^2)$ and $^2\pi\eta(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3)$, condition i implies that $x^1 = x^2, \eta^0 = x^2 = x^1$, and $\eta^2 = x^3$. Thus η must then be of the form

$$\eta(x^0, x^1, x^2, x^3) = (x^0, x^1, x^1, x^3; x^1, \eta^1, x^3, \eta^3)$$
,

which is not a cross-section of ${}^{2}\pi$: $TTTM \rightarrow TTM$.

Theorem 2. If ξ is a spray of the second type on π_* : $TTM \to TM$, then $S_*\xi S$ is a spray of the first type on $^1\pi$: $TTM \to TM$ and vice-versa.

Proof. If ξ is a spray of the second type on $\pi_*: TTM \to TM$, then from condition iii and the fact that $S^2\pi = {}^2\pi S_*$ we have

$$^{1}\pi_{*}S_{*}\xi S = \pi_{**}S_{*}S_{*}\xi S = \pi_{**}\xi S = S^{2}\pi\xi S = ^{2}\pi S_{*}\xi S$$
.

Also, composing condition iv on the left with S_* and on the right with S and using the fact that $h_a S_* = S_* h_a$, we have

$$S_{\star}\xi Sh_{\alpha} = h_{\alpha}(h_{\alpha})_{\star}S_{\star}\xi S$$
.

Thus $S_*\xi S$ is a spray of the first type on ${}^1\pi\colon TTM\to TM$ provided that it is a smooth cross-section of ${}^2\pi\colon TTM\to TTM$, which follows from a simple local calculation using the fact that ξ itself is such a cross-section.

On the other hand, if ξ is a spray of the first type on ${}^{1}\pi$: $TTM \to TM$, then from condition i and the fact that $S^{2}\pi = {}^{2}\pi S_{*}$,

$$\pi_{**}S_{*}\xi S = {}^{1}\pi_{*}\xi S = {}^{2}\pi\xi S = {}^{2}\pi S_{*}S_{*}\xi S = S^{2}\pi S_{*}\xi S$$
.

Also, composing condition ii on the right with S_* and on the left with S and using the fact that $h_a S_* = S_* h_a$, we have

$$S_* \xi h_a S = h_a S_* (h_a)_* \xi S$$
,
 $S_* \xi S S h_a S = h_a S_* (h_a)_* S_* S_* \xi S$.

Thus $S_*\xi S$ is a spray of the second type on $\pi_*: TTM \to TM$ provided that it is a smooth cross-section of $^2\pi: TTTM \to TTM$, which follows again from a simple local culculation using the fact that ξ itself is such a cross-section.

Theorem 3. Each spray on M induces a spray of the first type on $^1\pi$: TTM \rightarrow TM; moreover, $^1\pi$: TTM \rightarrow TM admits no spray of the second type.

Proof. Since by Theorem 1 each spray on M induces a spray of the second type on $\pi_*: TTM \to TM$, and each spray of the second type on $\pi_*: TTM \to TM$ induces a spray of the first type on $\pi_*: TTM \to TM$ via Theorem 2, we see that each spray on M induces a spray of the first type on $\pi_*: TTM \to TM$. In terms of the local product structure we see that the induced spray on $\pi_*: TTM \to TM$ has the form

(6)
$$S_*S\xi_*S(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; x^2, x^3, \Lambda(x^0)(x^2, x^2), \Lambda'(x^0)(x^1, x^2, x^2) + \Lambda(x^0)(x^3, x^2) + \Lambda(x^0)(x^2, x^3)).$$

To prove the second part of the theorem assume that there is a spray of the second type on ${}^{1}\pi:TTM \to TM$, say η . Then η has the form

$$\eta(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; \eta^0, \eta^1, \eta^2, \eta^3)$$
.

Since ${}^{1}\pi_{*}\eta(x^{0}, x^{1}, x^{2}, x^{3}) = (x^{0}, x^{1}, \eta^{0}, \eta^{1})$ and ${}^{2}\pi\eta(x^{0}, x^{1}, x^{2}, x^{3}) = (x^{0}, x^{1}, x^{2}, x^{3})$, condition iii implies that $x^{1} = x^{2}, \eta^{0} = x^{1}$ and $\eta^{1} = x^{3}$. Thus,

$$\eta(x^0, x^1, x^2, x^3) = (x^0, x^1, x^1, x^3; x^1, x^3, \eta^2, \eta^3),$$

which is not a cross-section of ${}^{2}\pi$: $TTTM \rightarrow TTM$.

In view of these results we will dispense with the terms "first and second types" when discussing sprays on the bundles of *TTM* and simply refer to sprays on these bundles, since each admits only one type of spray.

4. Sprays of connections

Suppose that D is the connection map of a smooth linear connection ∇ on M, [5]. If ξ is a smooth cross-section of $^{1}\pi$: $TTM \to TM$ which satisfies the conditions

$$\pi_{\star}\xi = {}^{1}\pi\xi , \qquad D\xi = 0 ,$$

then ξ is a spray on M, called the spray of the connection Γ , and has, relative to the local product structure, the form

(8)
$$\xi(x^0, x^1) = (x^0, x^1, x^1, -\Gamma(x^0)(x^1, x^1)),$$

where $\Gamma: U \to L^2(B, B; B)$ is the (smooth) local Christoffel component of the linear connection. This may be seen as follows. If

$$\xi(x^0, x^1) = (x^0, x^1, \xi^0(x^0, x^1), \xi^1(x^0, x^1))$$

then, from the first of conditions (7), $\pi_*\xi(x^0, x^1) = (x^0, \xi^0)$ and $\pi_*\xi(x^0, x^1) = (x^0, x^1)$ imply that $\xi^0(x^0, x^1) = x^1$, so

$$\xi(x^0, x^1) = (x^0, x^1, x^1, \xi^1(x^0, x^1))$$
.

Since D must have the form

$$(9) D(x^0, x^1, x^2, x^3) = (x^0, x^3 + \Gamma(x^0)(x^1, x^2)),$$

[5, p. 239], we see that the second of conditions (7),

$$D\xi(x^0, x^1) = (x^0, \xi^1 + \Gamma(x^0)(x^1, x^1)) = 0$$

implies that $\xi^1(x^0, x^1) = -\Gamma(x^0)(x^1, x^1)$, and that ξ has the form (8).

If we apply Theorems 1 and 3 we see that the spray of a connection Γ on M induces a spray on each of bundles $\pi_* \colon TTM \to TM$ and ${}^1\pi \colon TTM \to TM$ whose forms in the local product structure are given by replacing Λ in (5) and (6) by $-\Gamma$, whence if ξ and η denote these sprays respectively, then we have

(10)
$$\xi(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; x^1, -\Gamma(x^0)(x^1, x^1), x^3, \\ -\Gamma'(x^0)(x^2, x^1, x^1) - \Gamma(x^0)(x^3, x^1) - \Gamma(x^0)(x^1, x^3)) ,$$

Thus we have proved the theorem.

Theorem 4. If V is a smooth linear connection on M, then the spray of V induces a spray on $\pi_*: TTM \to TM$ and also a spray on $\pi_*: TTM \to TM$ which we call the sprays on these bundles induced by the connection V.

Theorem 5. Suppose that D is the connection map of a smooth linear connection ∇ on π_* : $TTM \to TM$. If ξ is a smooth cross-section of $^2\pi$: $TTTM \to TTM$ which satisfies the conditions

$$S\pi_{**}\xi = {}^2\pi\xi , \qquad D\xi = 0 ,$$

then ξ is a spray on π_* : $TTM \to TM$ which we call the spray of the connection ∇ .

Proof. If

$$\xi(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; \xi^0, \xi^1, \xi^2, \xi^3)$$

then, from the first of conditions (12), $S\pi_{**}\xi(x^0, x^1, x^2, x^3) = (x^0, \xi^0, x^2, \xi^2)$ and ${}^2\pi\xi(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3)$ imply that $\xi^0 = x^1$ and $\xi^2 = x^3$, so

$$\xi(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; x^1, \xi^1, x^3, \xi^3)$$
.

Since D must have the form

$$D(x^{0}, x^{1}, x^{2}, x^{3}; x^{4}, x^{5}, x^{6}, x^{7})$$

$$= (x^{0}, x^{5} + \Gamma^{0}(x^{0}, x^{2})(x^{1}, x^{3})(x^{4}, x^{6}), x^{2}, x^{7} + \Gamma^{1}(x^{0}, x^{2})(x^{1}, x^{3})(x^{4}, x^{6})),$$

[5, p. 240], we see that the second of conditions (12),

$$D\xi(x^0, x^1, x^2, x^3)$$
= $(x^0, \xi^1 + \Gamma^0(x^0, x^2)(x^1, x^3)(x^1, x^3), x^1, \xi^3 + \Gamma^1(x^0, x^2)(x^1, x^3)(x^1, x^3)) = 0$,

implies that $\xi^1 = -\Gamma^0(x^0, x^2)(x^1, x^3)(x^1, x^3)$ and $\xi^3 = -\Gamma^1(x^0, x^2)(x^1, x^3)(x^1, x^3)$, and thus

(13)
$$\xi(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; x^1, -\Gamma^0(x^0, x^2)(x^1, x^3)(x^1, x^3), x^3, \\ -\Gamma^1(x^0, x^2)(x^1, x^3)(x^1, x^3)),$$

which is a spray on π_* : $TTM \to TM$ by Lemma 3.

Theorem 6. Suppose that D is the connection map of a smooth linear connection ∇ on $^1\pi$: $TTM \to TM$. If ξ is a smooth cross-section of $^2\pi$: $TTTM \to TTM$ which satisfies the conditions

(14)
$${}^{1}\pi_{*}\xi = {}^{2}\pi\xi$$
, $D\xi = 0$,

then ξ is a spray on ${}^{1}\pi$: $TTM \to TM$ which we call the spray of the connection ∇ .

Proof. If

$$\xi(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; \xi^0, \xi^1, \xi^2, \xi^3)$$

then from the first of conditions (14),

$${}^{1}\pi_{+}\xi(x^{0}, x^{1}, x^{2}, x^{3}) = (x^{0}, x^{1}, \xi^{0}, \xi^{1})$$
 and ${}^{2}\pi\xi(x^{0}, x^{1}, x^{2}, x^{3}) = (x^{0}, x^{1}, x^{2}, x^{3})$

imply that $\xi^0 = x^1$ and $\xi^1 = x^3$, so

$$\xi(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; x^2, x^3, \xi^2, \xi^3)$$

Since D must have the form

$$D(x^{0}, x^{1}, x^{2}, x^{3}; x^{4}, x^{5}, x^{6}, x^{7})$$

$$= (x^{0}, x^{6} + I^{0}(x^{0}, x^{1})(x^{2}, x^{3})(x^{4}, x^{5}), x^{1}, x^{7} + I^{1}(x^{0}, x^{1})(x^{2}, x^{3})(x^{4}, x^{5})),$$

we see that the second of conditions (14),

$$D\xi(x^0, x^1, x^2, x^3)$$
= $(x^0, \xi^2 + \Gamma^0(x^0, x^1)(x^2, x^3)(x^2, x^3), x^1, \xi^3 + \Gamma^1(x^0, x^1)(x^2, x^3)(x^2, x^3)) = 0$,

implies that $\xi^2 = -\Gamma^0(x^0, x^1)(x^2, x^3)(x^2, x^3)$ and $\xi^3 = -\Gamma^1(x^0, x^1)(x^2, x^3)(x^2, x^3)$; thus

(15)
$$\xi(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; x^2, x^3, -\Gamma^0(x^0, x^1)(x^2, x^3)(x^2, x^3), \\ -\Gamma^1(x^0, x^1)(x^2, x^3)(x^2, x^3)) ,$$

which is a spray on ${}^{1}\pi: TTM \to TM$ by Lemma 2.

In [5] Vilms has shown that if D is the connection map of a smooth (linear) connection V on M, then V induces a smooth (linear) connection on $\pi_*: TTM \to TM$ (resp. $^1\pi: TTM \to TM$) with connection map D_*S (resp. SD_*SS_*).

Theorem 7. If V is a smooth linear connection on M, then the spray induced on π_* : $TTM \to TM$ (resp. $^1\pi$: $TTM \to TM$) by V is the same as the spray of the linear connection which V induces on π_* : $TTM \to TM$ (resp. $^1\pi$: $TTM \to TM$).

Proof. If D is the connection map of a smooth linear connection on M, then in terms of the local product structure determined by an arbitrary coordinate chart of M, D has the form (9). Thus

$$D_*S(x^0, x^1, x^2, x^3; x^4, x^5, x^6, x^7) = D_*(x^0, x^1, x^4, x^5; x^2, x^3, x^0, x^7)$$

is the tangent vector at t = 0 of the curve

$$D(x^{0} + tx^{2}, x^{1} + tx^{3}, x^{4} + tx^{6}, x^{5} + tx^{7})$$

$$= (x^{0} + tx^{2}, x^{5} + tx^{7} + \Gamma(x^{0} + tx^{2})(x^{1} + tx^{3}, x^{4} + tx^{6})).$$

Hence

(16)
$$D_*S(x^0, x^1, x^2, x^3; x^4, x^5, x^6, x^7) = (x^0, x^5 + \Gamma(x^0)(x^1, x^4), x^2, x^7 + \Gamma'(x^0)(x^2, x^1, x^4) + \Gamma(x^0)(x^3, x^4) + \Gamma(x^0)(x^1, x^6)),$$

(17)
$$SD_*SS_*(x^0, x^1, x^2, x^3; x^4, x^5, x^6, x^7) = (x^0, x^1, x^6 + \Gamma(x^0)(x^2, x^4), x^7 + \Gamma'(x^0)(x^1, x^2, x^4) + \Gamma(x^0)(x^3, x^4) + \Gamma(x^0)(x^2, x^5)).$$

Thus if we take

$$\Gamma^{0}(x^{0}, x^{2})(x^{1}, x^{3})(x^{4}, x^{6}) = -\Gamma(x^{0})(x^{1}, x^{4}) ,$$

$$\Gamma^{1}(x^{0}, x^{2})(x^{1}, x^{3})(x^{4}, x^{6}) = -\Gamma'(x^{0})(x^{2}, x^{1}, x^{4}) - \Gamma(x^{0})(x^{3}, x^{4}) - \Gamma(x^{0})(x^{1}, x^{6})$$

in (13), we see that the spray of $D_{\star}S$ is

(18)
$$\xi(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; x^1, -\Gamma(x^0)(x^1, x^1), x^3, -\Gamma'(x^0)(x^2, x^1, x^1) - \Gamma(x^0)(x^3, x^1) - \Gamma(x^0)(x^1, x^3)) .$$

Taking

$$\Gamma^{0}(x^{0}, x^{1})(x^{2}, x^{3})(x^{4}, x^{5}) = -\Gamma(x^{0})(x^{2}, x^{4}) ,$$

$$\Gamma^{1}(x^{0}, x^{1})(x^{2}, x^{3})(x^{4}, x^{5}) = -\Gamma'(x^{0})(x^{1}, x^{2}, x^{4}) - \Gamma(x^{0})(x^{3}, x^{4}) - \Gamma(x^{0})(x^{2}, x^{5})$$

in (15) we see that the spray of $SD_{\star}SS_{\star}$ is

(19)
$$\xi(x^0, x^1, x^2, x^3) = (x^0, x^1, x^2, x^3; x^2, x^3, -\Gamma(x^0)(x^2, x^2), -\Gamma'(x^0)(x^1, x^2, x^2) \\ -\Gamma(x^0)(x^3, x^2) - \Gamma(x^0)(x^2, x^3)$$

Comparing (18) and (19) with (10) and (11) we see that they are the same in the local product structure determined by each chart of M and are thus identical.

References

- [1] W. Ambrose, R. S. Palais & I. M. Singer, Sprays, An. Acad. Brasil. Ci. 32 (1960) 163-178.
- [2] P. Dombrowski, Geometry of tangent bundles, J. Reine Angew. Math. 210 (1962) 73-88.
- [3] S. Kobayashi, Theory of connections, Ann. Mat. Pura Appl. 43 (1957) 119-194.
- [4] S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.
- [5] J. Vilms, Connections on tangent bundles, J. Differential Geometry 1 (1967) 235– 243.

VANDERBILT UNIVERSITY